A fast FFT-based discrete Legendre transform

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast FFT-based discrete Legendre transform

An O(N(logN)2/ loglogN) algorithm for computing the discrete Legendre transform and its inverse is described. The algorithm combines a recently developed fast transform for converting between Legendre and Chebyshev coefficients with a Taylor series expansion for Chebyshev polynomials about equallyspaced points in the frequency domain. Both components are based on the FFT, and as an intermediate...

متن کامل

Fast Fourier Transform ( FFT )

The DFT can be reduced from exponential time with the Fast Fourier Transform algorithm. Fast Fourier Transform (FFT) One wonders if the DFT can be computed faster: Does another computational procedure an algorithm exist that can compute the same quantity, but more e ciently. We could seek methods that reduce the constant of proportionality, but do not change the DFT's complexity O ( N ) . Here,...

متن کامل

Pressure laws and fast Legendre transform

In this paper we investigate algorithms based on the Fast Legendre Transform (FLT) in order to compute tabulated Equation Of State (EOS) for fluids with phase transition. The equation of state of a binary mixture is given by an energy minimization principle. According to the miscible or immiscible nature of the mixture, the energy of the system is either a convex envelope or an inf-convolution ...

متن کامل

Lecture 20: Discrete Fourier Transform and FFT

basically saying we care not about the rest of x[n], since it is zero. Pretend that it is periodic for analysis purpose since for the DFT it makes no difference. Defined only for 0≤ n,k ≤ N−1. The rest is zero. This means the inherent periodicity is not represented. Notation x[n] DFT ←→ X [k] Lots of properties (similar to DFS) circular convolution is important. Given x1[n] and x2[n], form x̃1[n...

متن کامل

A Fast Analysis-Based Discrete Hankel Transform Using Asymptotic Expansions

A fast and numerically stable algorithm is described for computing the discrete Hankel transform of order 0 as well as evaluating Schlömilch and Fourier–Bessel expansions in O(N(logN)2/ loglogN) operations. The algorithm is based on an asymptotic expansion for Bessel functions of large arguments, the fast Fourier transform, and the Neumann addition formula. All the algorithmic parameters are se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2015

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/drv060